Cycles in Hyperbolic Manifolds of Non-compact Type and Fourier Coefficients of Siegel Modular Forms

نویسندگان

  • JENS FUNKE
  • JOHN MILLSON
چکیده

Throughout the 1980’s, Kudla and the second named author studied integral transforms Λ from closed differential forms on arithmetic quotients of the symmetric spaces of orthogonal and unitary groups to spaces of classical Siegel and Hermitian modular forms ([11, 12, 13, 14]). These transforms came from the theory of dual reductive pairs and the theta correspondence. In [14] they computed the Fourier expansion of Λ(η) in terms of periods of η over certain totally geodesic cycles under the assumption that η was rapidly decreasing. This also gave rise to the realization of intersection numbers of these ‘special’ cycles with cycles with compact support as Fourier coefficients of modular forms. It is clear from [7],[4] and [6] that the situation is far more complicated when the hypothesis of rapid decay is dropped. The purpose of this paper is to initiate a systematic study of this transform for non rapidly decreasing differential forms η by considering the case for the finite volume quotients of hyperbolic space coming from unit groups of isotropic quadratic forms over Q. We expect that many of the techniques and features of this case will carry over to the more general situation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Elliptic Genus of Calabi–yau Manifolds and Jacobi and Siegel Modular Forms

In the paper we study two types of relations: a one is between the elliptic genus of Calabi–Yau manifolds and Jacobi modular forms, another one is between the second quantized elliptic genus, Siegel modular forms and Lorentzian Kac–Moody Lie algebras. We also determine the structure of the graded ring of the weak Jacobi forms with integral Fourier coefficients. It gives us a number of applicati...

متن کامل

Root multiplicities of hyperbolic Kac–Moody algebras and Fourier coefficients of modular forms

In this paper we consider the hyperbolic Kac–Moody algebra F associated with the generalized Cartan matrix ( 2 −2 0 −2 2 −1 0 −1 2 ) . Its connection to Siegel modular forms of genus 2 was first studied by A. Feingold and I. Frenkel. The denominator function of F is not an automorphic form. However, Gritsenko and Nikulin extended F to a generalized Kac–Moody algebra whose denominator function i...

متن کامل

Hecke Operators on Hilbert–siegel Modular Forms

We define Hilbert–Siegel modular forms and Hecke “operators” acting on them. As with Hilbert modular forms (i.e. with Siegel degree 1), these linear transformations are not linear operators until we consider a direct product of spaces of modular forms (with varying groups), modulo natural identifications we can make between certain spaces. With Hilbert–Siegel forms (i.e. with arbitrary Siegel d...

متن کامل

Operators on Hilbert - Siegel Modular Forms

We define Hilbert-Siegel modular forms and Hecke “operators” acting on them. As with Hilbert modular forms (i.e. with Siegel degree 1), these linear transformations are not linear operators until we consider a direct product of spaces of modular forms (with varying groups), modulo natural identifications we can make between certain spaces. With Hilbert-Siegel forms (i.e. with arbitrary Siegel d...

متن کامل

Non-vanishing of Fundamental Fourier Coefficients of Paramodular Forms

of fundamental Fourier coefficients, which plays an important role in the theory of Bessel models and L-functions. For instance, in certain cases, non-vanishing of a fundamental Fourier coefficient of a cuspidal Siegel modular form F is equivalent to existence of a global Bessel model of fundamental type (cf. [16, Lemma 4.1]) and is used to show analytic properties and special value results for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008